Фотосинтетические пигменты находятся

Фотосинтетические пигменты находятся

Фотосинтетические пигменты — ФОТОСИНТЕЗ — СТРОЕНИЕ РАСТИТЕЛЬНОЙ КЛЕТКИ — КЛЕТКА

Они представлены молекулами, способными поглощать кванты (нем. Quantum — количество, лат. quantum — сколько) света. Поскольку при этом поглощается свет лишь определенной длины волны, часть световых волн не поглощается, а отражается. В зависимости от спектрального состава отраженного света пигменты приобретают окраску — зеленую, желтую, красную и др. В настоящее время различают три класса фотосинтетических пигментов — хлорофиллы, каротиноиды и фикобилины.

Самым распространенным и наиболее важным фотосинтетическим пигментом является хлорофилл (греч. chloros — зеленоватый, phyllon — лист), который имеется практически у всех фототрофов (напоминаем, что фототрофами называются автотрофные организмы, способные к фотосинтезу). Хлорофилл неоднороден, насчитывается свыше десятка зеленых пигментов, отличающихся друг от друга атомными группами, присоединенными к пиррольным структурам порфиринового кольца, а также по некоторым другим характеристикам. Поэтому целесообразно начать с химической характеристики хлорофилла и других фотосинтетических пигментов.

Химически хлорофилл представляет собой сложный эфир дикарбоновой кислоты хлорофиллина с двумя спиртами — фитолом и метанолом. Пространственная структура молекулы определяет свойства хлорофилла. Основой является плоское порфириновое ядро, образованное четырьмя пиррольными кольцами, соединенными между собой метиновыми мостиками, с атомом магния в центре (рис. 43). В порфириновом ядре, кроме собственно пиррола, содержатся также его изомер — пир- роленин и продукт неполного восстановления пиррола — пирролин. Поскольку в этих циклических соединениях, помимо атомов углерода, присутствует гетероатом (греч. heteros — другой) — азот, они называются гетероциклическими. Наличие двойных связей позволяет отнести их к ненасыщенным гетероциклам. Атомы углерода, расположенные в гетероцикле рядом с гетероатомом — азотом, обозначаются как а-атомы, а удаленные от него — Д-атомы. Поскольку все связи а-углеродных атомов в молекуле хлорофилла заняты в формировании порфиринового кольца, они не определяют специфику различных видов хлорофилла, эту функцию выполняют Д-углеродные атомы. Сами атомы азота взаимодействуют с расположенным в центре ядра атомом металла — магнием (отметим, что у близкого по строению гема, входящего в состав гемоглобина, миоглобина или цитохрома, в центре ядра находится атом железа). Так как в порфириновом ядре имеются многочисленные двойные связи, там присутствуют делокализованные (более подвижные) p-электроны, которых в ядре насчитывается 18. Позднее мы расскажем о значении таких электронов для фотосинтеза.

Фитол относится к дитерпенам, основу которых составляют остатки изопрена.

Такая структура молекулы определяет свойства хлорофилла — гидрофобный фитольный «хвост» надежно удерживает молекулу в гидрофобной части мембраны тилакоида хлоропласта, а гидрофильное порфириновое ядро обращено к строме хлоропласта. При этом само ядро ориентировано параллельно мембране, в которой находится хлорофилл.

Синтез хлорофилла довольно сложен и включает в себя 15 реакций, которые можно разделить на три этапа. Исходными веществами для синтеза хлорофилла являются глицин и ацетат. На первом этапе образуется -аминолевулиновая кислота. На втором этапе происходит синтез одной молекулы протопорфирина из четырех пиррольных колец. Третий этап представляет собой образование и превращение магнийпорфиринов.

Все низшие и высшие растения, а также цианобактерии содержат различные хлорофиллы типа а. У высших растений, зеленых и эвгленовых водорослей имеется хлорофилл b(он образуется из хлорофилла а), который отличается от хлорофилла а присутствием формильной группы -СНО, вместо метильной (-СН3) у третьего атома углерода. Бурые и диатомовые водоросли вместо хлорофилла b содержат хлорофилл с, не имеющий остатка фитола, а красные водоросли — хлорофилл d, который отличается от хлорофилла а тем, что при углеродном атоме 2 порфиринового кольца вместо винильной группы имеется формильный радикал. Хлорофиллы бактерий имеют некоторые специфические особенности и называются бактериохлорофиллами.

Молекулы хлорофиллов способны, взаимодействуя друг с другом и молекулами белков, создавать агрегированные формы, различающиеся по длине волн поглощенного света.Хлорофилл а имеет два четко выраженных максимума поглощения — 660 — 663 нм и 428 — 430 нм. Хлорофилл b поглощает более короткие волны в красной части спектра и более длинные в синей. Его максимумы поглощения будут 642 — 644 нм и 452 — 455 нм соответственно. Все хлорофиллы слабо поглощают желтый и оранжевый свет, а зеленый они отражают, что и определяет зеленую окраску этого класса пигментов (рис. 44).

Бактериохлорофиллы отличаются от прочих типов хлорофиллов тем, что способны поглощать красный свет гораздо большей длины, чем хлорофиллы растений. Так, бактериохлорофилл зеленых бактерий утилизирует волны длиной 850 нм, бактериохлорофилл а пурпурных бактерий до 900 нм, а бактериохлорофилл b пурпурных бактерий — до 1100 нм. Это обстоятельство позволяет бактериям, особенно пурпурным, активно расти при наличии лишь не видимых человеческим глазом инфракрасных лучей.

Другую обязательную группу фотосинтетических пигментов образуют каротиноиды (лат. carota — морковь). Эти жирорастворимые пигменты имеют различную окраску — от желтой до красной. Они содержатся во всех окрашенных пластидах (хлоропластах и хромопластах) растений. Причем в зеленых частях растений хлорофилл маскирует каротиноиды, делая их незаметными до наступления холодов. Осенью зеленые пигменты разрушаются, и каротиноиды становятся хорошо заметными, определяя окраску осенних листьев. Кроме растений, каротиноиды синтезируют фототрофные бактерии и грибы.

Каротиноиды в растительном организме выполняют ряд функций, среди которых наиболее очевидными являются следующие: участие в фотосинтезе в качестве дополнительных пигментов антенных комплексов. Они способны поглощать свет, не доступный для других пигментов, и передавать его хлорофиллам. Кроме того, каротиноиды ослабляют фотоокисление хлорофилла в присутствии кислорода.

Третьей группой фотосинтетических пигментов являются фикобилины (греч. phykos — водоросль, лат. bilis — желчь), которые присутствуют у некоторых водорослей (красных) и цианобактерий. Отдельными молекулами фикобилины, как правило, не представлены, а образуют комплексы с белками, с которыми они, в отличие от хлорофиллов, связаны прочными ковалентными связями. Комплексы таких пигментов с белками называются фикоби- липротеидами (хромопротеидами).

Согласно первому закону термодинамики энергия не может исчезать или возникать ниоткуда — она может лишь переходить из одного состояния в другое. Согласно второму закону термодинамики часть энергии в процессе такого перехода теряется в виде тепла из-за энтропии, причем величина энтропии возрастает при необратимых процессах (например, теплопроводность, диффузия) и остается постоянной при обратимых. Поэтому при межмолекулярной передаче молекула всегда отдает большее количество энергии, чем ее в итоге получает молекула-акцептор.

Величина энергии электрона определяет расстояние от него до ядра — чем меньше энергия электрона, тем ближе он к ядру, и наоборот. Любому энергетическому состоянию электрона соответствует определенный энергетический уровень (квантовый слой), характеризуемый главным квантовым числом п, которое имеет значения от единицы до бесконечности. Соответственно электрон, будучи на первом уровне, обладает минимальной энергией и максимально близок к ядру, а находясь на наиболее удаленном уровне, обладает максимальной энергией. При переходе на более далекий уровень электрон поглощает энергию, а при возврате на более близкий — выделяет в виде порций (квантов).

Согласно сказанному выше электроны молекул пигментов, поглотив энергию, переходят на более высокий энергетический уровень, т.е. становятся возбужденными. Однако рано или поздно они возвращаются на свой исходный (стационарный) уровень, выделив энергию, полученную ранее при возбуждении.

Молекула хлорофилла, поглотив порцию (квант) света, переходит в несколько иное по сравнению с обычным состояние, которое называют возбужденным. Это состояние отличается от тепловой активации молекул, поскольку каждый квант возбуждает лишь одну молекулу хлорофилла, передавая ей свою энергию. При этом квант поглощается не всей молекулой хлорофилла, а лишь одним из ее электронов, причем наиболее легко активируются электроны, находящиеся в порфириновом кольце хлорофилла. Поглотивший квант света электрон временно переходит со своего основного энергетического уровня на более высокий. При этом на основном уровне место перешедшего электрона остается вакантным (появляется электронная «дырка») и вся молекула становится возбужденной. Возврат электрона на исходный уровень сопровождается выделением энергии в виде тепла, или же она высвечивается в виде кванта света с длиной волны всегда большей (правило Стокса), чем у поглощенного кванта света.

Читайте также:  Вентрикуломегалия у плода

Количество фиксированных молекул углекислого газа в расчете на единицу поглощенной энергии определяет энергетическую эффективность фотосинтеза. Как мы уже говорили, у основного фотосинтетического пигмента хлорофилла имеются два пика поглощения света — в синей и красной, а также частично в инфракрасной частях спектра. Солнце излучает максимальное количество квантов длинноволновой части спектра, и следует отметить, что энергетическая эффективность таких лучей почти вдвое выше, чем синих, потому что при поглощении высоко энергетически насыщенных коротких волн происходит тепловое рассеивание значительной части энергии.

Итак, в основе всех энергетических процессов, которым происходят в живых организмах, лежит энергия возбужденного электрона хлорофилла, которую он получает, поглощая квант света. Теперь настало время проследить путь этого электрона, причем, как мы увидим позже, он в прямом смысле этого слова может быть весьма извилистым.

В мембранах тилакоидов хлоропластов были обнаружены комплексы молекул, названные фотосистемой I и фотосистемой II. Они совместно обеспечивают трансформацию световой энергии в удобную для использования живыми организмами энергию химических связей.

Каждая из фотосистем имеет реакционный центр (рис. 45), который образован пронизывающими насквозь мембрану тилакоида белками, ассоциированными с хлорофиллом (напомним, что комплекс молекулы белка с пигментом называется хромопротеидом). Пигменты реакционного центра способны поглощать энергию света, которая переводит электроны в неустойчивое возбужденное состояние, в результате чего они покидают молекулу хлорофилла и переходят на расположенные поблизости молекулы-переносчики. Это говорит о том, что находящийся в реакционном центре хлорофилл способен осуществлять фотохимические реакции.

Вторым обязательным компонентом фотосистемы является антенным комплекс. В нем также имеется хлорофилл, причем на его долю приходится до 60% общего количества хлорофилла тилакоидных мембран. Специальные исследования показали, что на один реакционный центр приходится 200 — 400 молекул хлорофилла, расположенных в антенных комплексах. Кроме хлорофилла а, здесь присутствуют еще и дополнительные пигменты — хлорофилл в, каротиноиды и фикобилины. Их роль заключается в улавливании света с длиной волн, не доступной для хлорофилла а. Следует отметить, что молекулы пигментов антенных комплексов, пребывая в возбужденном состоянии (в результате поглощения энергии фотона), не осуществляют фотохимических реакций, зато они эффективно передают полученную энергию по цепи хлорофиллу реакционного центра. Направление переноса энергии (электроны здесь не передаются) в антенных комплексах всегда ориентировано от пигментов, поглощающих самую короткую часть спектра (каротиноидов), к более «длинноволновым» пигментам. Как мы уже говорили, такой процесс получил название резонансной передачи энергии. При этом резонансная передача энергии, осуществляемая между одинаковыми молекулами хлорофилла, получила название гомогенной, если же энергия переносится на другой тип пигмента, то перенос называется гетерогенным.

Рассмотрим устройство фотосистемы I. Считается, что исторически она возникла раньше фотосистемы II и в настоящее время имеется практически у всех фотосинтезирующих организмов, включая способных к фотосинтезу бактерий (у последних отсутствует фотосистема II и, следовательно, не происходит разложения воды и выделения кислорода). В состав реакционного центра этой фотосистемы входят хромопротеиды, содержащие самую длинноволновую форму хлорофилла (его сокращенно обозначают как П700, показывая тем самым длину волны, которую способен поглощать конкретный пигмент). Антенный комплекс этой фотосистемы включает в себя 110 молекул хлорофиллов группы а, имеющих максимумы поглощения от 675 до 695 нм.

Согласно теории эволюции фотосистема II в процессе исторического развития появилась позже. На современном этапе она присутствует у всех зеленых растений, а также у сине-зеленых водорослей. Белковые комплексы фотосистемы II включают в себя несколько более коротковолновые формы хлорофилла. Реакционный центр содержит более коротковолновую форму хлорофилла а — П680. В антенном комплексе имеются хлорофиллы а670-683.

Кроме того, в мембранах тилакоидов находятся непосредственно связанные с фотосистемой II светособирающие белковые комплексы, в которых присутствуют хлорофиллыа660-675, а также хлорофилл в650 (несколько в большем количестве, чем хлорофилл а) и каротиноиды.

Весьма сложные и разнообразные реакции фотосинтеза, в основе которых лежат фотохимические процессы, в конечном итоге преобразуют энергию света в химическую. Однако наличие света необходимо отнюдь не для всех этапов, а лишь вначале, поэтому в фотосинтезе выделяют световую и темновую стадии.

Фотосинтетические пигменты находятся

Гусев М. В., Минеева Л. А. — Микробиология

В представленном в этой главе материале проанализированы энергетические процессы, сформированные на первом этапе эволюции жизни на Земле. То, что брожение — наиболее примитивный способ получения энергии организмами, в настоящее время никем не ставится под сомнение. Гораздо сложнее оценить, какой путь в процессе эволюции пройден теми или иными организмами. Очевидно, что при имеющихся возможностях обмена генетической информацией в мире прокариот сохранение их в первоначальном виде маловероятно. Описание представленных в этой главе нескольких групп анаэробных эубактерий, в первую очередь, пропионовокислых бактерий и клостридиев, служит иллюстрацией этого.

Глава 14. Фотосинтез. Типы жизни, основанные на фотофосфорилировании

В предыдущей главе был рассмотрен ряд групп прокариот, относящихся к эубактериям, получающих энергию в реакциях субстратного фосфорилирования и не зависящих от молекулярного кислорода. Их предки появились на Земле, когда в ее атмосфере отсутствовал O2. Единственным источником свободной энергии, доступным первобытным организмам, была химическая энергия органических молекул, возникших в основном абиогенным путем. Увеличение численности популяций приводило к возрастанию использования органических молекул в окружающей среде, которое на определенном этапе стало превышать их накопление. В результате органические вещества постепенно исчерпывались из среды. Создавалась критическая ситуация, вызываемая нехваткой соединений, которые могли бы служить источником свободной энергии для организмов. Перед ними возникла проблема поиска новых источников углеродного питания и свободной энергии. В энергетическом плане необходимо было найти способ получения энергии за счет постоянно действующего источника. Такой источник энергии представляет собой солнечная радиация. Глобальное значение развившейся способности использовать световую энергию в том, что фотосинтез — единственный процесс, приводящий к увеличению свободной энергии на нашей планете. Таким образом, фотосинтез обязан своим «происхождением» экологическому кризису, возникшему в результате исчерпания на определенном этапе развития жизни органических ресурсов планеты.

Жизнь за счет анаэробных превращений органических субстратов привела к возникновению анаэробной формы жизни за счет света. Для этого прежде всего должны были возникнуть молекулы, поглощающие кванты света. Когда сформировались структуры для улавливания света, появилась возможность использования световой энергии. То, как эта возможность реализовывалась, доказывает наличие нескольких типов фотосинтеза, осуществляемого разными группами эубактерий, энергетический метаболизм которых полностью или частично основан на использовании энергии света. Фотосинтезирующие эубактерий представлены пурпурными и зелеными бактериями, гелиобактериями, цианобактериями51 и прохлорофитами.

Читайте также:  ПЕРВЫЕ СИМПТОМЫ ТУБЕРКУЛЕЗА ЛЁГКИХ ГБУЗ АО; Свободненская больница

51 В ботанической литературе — сине-зеленые водоросли.

Пигменты фотосинтезирующих эубактерий

Для абиогенного синтеза органических веществ в основном требовался ультрафиолет. Все известные в настоящее время фотосинтезирующие организмы используют в процессе фотосинтеза видимый и инфракрасный свет. Наиболее богатые энергией ультрафиолетовые лучи в фотосинтезе практически не используются (см. рис. 35). Это связано с фотохимическими эффектами разных частей спектра, рассмотренными ранее.

Фотосинтезирующие эубактерий обязательно содержат магнийпорфириновые пигменты — хлорофиллы. Известно больше десяти видов хлорофиллов, но все они поглощают свет видимой и инфракрасной частей спектра.

Вероятно, первыми фоторецепторами, предшественниками современных хлорофиллов, следует считать порфирины, структура которых обеспечивает поглощение умеренно энергизованных квантов света. Экспериментально показана возможность синтеза порфиринов абиогенным путем из простых веществ в условиях, имитирующих условия первобытной Земли.

Важным моментом в эволюции порфиринов явилось включение ионов металла в центр порфиринового ядра. Все порфирины, обладающие фоторецепторным действием, являются магниевыми комплексами. Порфирины, участвующие в темновом транспорте электронов (цитохромы), а также ферменты каталаза и пероксидаза содержат в центре порфиринового кольца атом железа.

Итак, способность организмов существовать за счет энергии света в первую очередь связана с наличием у них специфических фоторецепторных молекул — пигментов. Набор пигментов характерен и постоянен для определенных трупп фотосинтезирующих эубактерий. Соотношения между отдельными пигментами колеблются в зависимости от вида и условий культивирования. В целом фотосинтетические пигменты эубактерий обеспечивают поглощение света с длиной волны в области 300 — 1100 нм.

Все фотосинтетические пигменты относятся к двум химическим классам соединений: 1) пигменты, в основе которых лежит тетрапиррольная структура (хлорофиллы, фикобилипротеины); 2) пигменты, основу которых составляют длинные полиизопреноидные цепи (каротиноиды). Особенность химического строения молекул всех фотосинтетических пигментов состоит в наличии системы сопряженных двойных связей52, от количества которых зависит способность пигментов улавливать бедные энергией кванты света, а также защита каротиноидами хлорофилла от синглетного кислорода.

52 Сопряженными называются двойные связи, чередующиеся с простыми, т. e. -CH=CH-СH=CH-.

Хлорофиллы

Рис. 68. Обобщенная формула хлорофиллов. Римскими цифрами указаны пиррольные кольца. Химическая природа радикалов R1 — R7 приведена в табл. 19

У фотосинтезирующих эубактерий известно больше десяти видов хлорофиллов (рис. 68, табл. 19). Хлорофиллы эубактерий, осуществляющих бескислородный фотосинтез (пурпурные и зеленые бактерии, гелиобактерии) получили общее название бактериохлорофиллов. Идентифицировано 6 основных видов бактериохлорофиллов: а, b, с, d, e, g53. Все пурпурные бактерии содержат какую-либо одну форму бактериохлорофилла: a или b. Небольшие различия в химическом строении приводят к существенным изменениям в спектральных свойствах этих пигментов. Пурпурные бактерии, содержащие бактериохлорофилл a, могут поглощать свет с длиной волны до 950 нм. У видов, имеющих бактериохлорофилл b, максимум поглощения в красной части спектра сдвинут в длинноволновую область больше чем на 100 нм и приходится на 1020 — 1030 нм, а граница поглощения продвинута до 1100 нм. Дальше бактериохлорофилла b не поглощает ни один известный фотосинтетический пигмент. Основными хлорофилльными пигментами зеленых бактерий являются бактериохлорофиллы с, d или e, незначительно различающиеся между собой по спектрам поглощения (табл. 19). Кроме них в клетках всех зеленых бактерий в небольшом количестве содержится бактериохлорофилл a. Наличие этих бактериохлорофиллов позволяет зеленым бактериям использовать свет с длиной волны до 840 нм. Необычный бактериохлорофилл g с максимумом поглощения 790 нм обнаружен у облигатно анаэробных фотосинтезирующих бактерий Heliobacterium chlorum и Heliobacillus mobilis, выделенных в группу гелиобактерий.

53 Бактериохлорофиллы a, b и c, по последним данным, существуют в нескольких модификациях, так как радикал R6 может быть фитолом, фарнезолом, геранил-гераниолом или другим многоатомным спиртом (табл. 19).

Эубактерии, фотосинтез которых сопровождается выделением молекулярного кислорода (цианобактерии и прохлорофиты), содержат хлорофиллы, характерные для фотосинтезирующих эукариотных организмов. У цианобактерий — это хлорофилл a, единственный вид хлорофилла, обнаруженный в этой группе; в клетках прохлорофит — хлорофиллы a и b. Присутствие этих пигментов обеспечивает поглощение света до 750 нм.

Для всех хлорофиллов характерно наличие нескольких максимумов по глощения. В клетке спектральные свойства хлорофиллов определяются нековалентными взаимодействиями молекул пигмента друг с другом, а также с липидами и белками фотосинтетических мембран.

Фикобилипротеины

Таблица 19. Различия в химическом строении хлорофиллов фотосинтезирующих эубактерий и основные максимумы их поглощения в клетке

Химическая природа радикалов, указанных на рис. 68

Основной максимумпоглощения в клетке, нм

Фикобилипротеины — красные и синие пигменты, содержащиеся только у одной группы эубактерий — цианобактерий54. Хромофорная группа пигмента, называемая фикобилином, ковалентно связана с водорастворимым белком типа глобулина и представляет собой структуру, состоящую из четырех пиррольных колец, но не замкнутых, как в молекуле хлорофилла, а имеющих вид развернутой цепи, не содержащей металла (рис. 69). Молекулы фикобилипротеинов состоят из двух нековалентно связанных неидентичных субъединиц — a и b, к каждой из которых ковалентно присоединены хромофорные группы: фикоэритробилин или фикоцианобилин. Некоторые данные относительно строения и спектральных свойств фикобилипротеинов цианобактерий приведены в табл. 20.

34 Фикобилипротеины содержатся также у двух групп эукариот: красных и криптофитовых водорослей.

Таблица 20. Строение и спектральные свойства основных фикобилипротеинов цианобактерий

Субъединичный состав мономера

Число и тип молекул хромофоров, связанных с субъединицами*

Состояние пигмента в клетке

Основной максимум поглощения, нм

* ФЭБ — фикоэритробилин; ФЦБ — фикоцианобилин.

Различия в спектральных свойствах фикобилипротеинов определяются аминокислотной последовательностью a- и b-полипептидов, числом и типом присоединенных к ним хромофорных групп, а также степенью агрегирования. Так, переход аллофикоцианина из мономерного состояния в гримерное сопровождается изменением максимума поглощения от 616 до 654 нм. Степень агрегирования зависит от вида и возраста культуры, а также от внешних факторов: pH, ионной силы раствора, температуры. В основе агрегирования молекул фикобилипротеинов лежат гидрофобные взаимодействия между мономерами. Значение способности фикобилипротеинов к агрегированию становится понятным при формировании ими фикобилисом — структур, в которых эти пигменты организованы в агрегаты высокого порядка.

Рис. 69. Химическая структура хромофорных групп фикоэритрина (фикоэритробилин), фикоцианина и аллофикоцианинов (фикоцианобилин). Римскими цифрами указаны пиррольные кольца (по Chapman, 1973)

Фикобилипротеины обеспечивают в клетках цианобактерий поглощение света в области 450 — 700 нм и с высокой эффективностью (больше 90%) передают поглощенный свет на хлорофилл, при этом основное количество энергии передается на хлорофилл, связанный со II фотосистемой. Все цианобактерий содержат небольшие количества аллофикоцианина и его длинноволновой формы — аллофикоцианина B, а также значительные количества фикоцианина, одного из основных клеточных пигментов, содержание которого в условиях низкой освещенности может достигать 60% от общего уровня растворимых белков клетки. Некоторые цианобактерий содержат также второй основной фикобилипротеин — фикоэритрин. Способность синтезировать фикоэритрин может быть конститутивным свойством организма или индуцироваться в определенных условиях освещения.

Каротиноиды

К вспомогательным фотосинтетическим пигментам, которые содержат все фотосинтезирующие организмы, относятся каротиноиды, большая группа химических соединений, представляющих собой продукт конденсации остатков изопрена:

Большинство каротиноидов построено на основе конденсации 8 изопреноидных остатков. У некоторых каротиноидов полиизо- преноидная цепь открыта и не содержит циклических группировок. Такие каротиноиды называются алифатическими. У большинства на одном или обоих концах цепи расположено по ароматическому или (3-иононовому кольцу. Каротиноиды первого типа относятся к арильным, второго — к алициклическим. Выделяют также каротиноиды, не содержащие в молекуле кислорода, и кислородсодержащие каротиноиды, общее название которых ксантофиллы.

Читайте также:  Дигоксин инструкция по применению, цена, отзывы, аналоги, для чего

Состав каротиноидов фотосинтезирующих эубактерий разнообразен. Наряду с пигментами, одинаковыми у разных групп, для каждой из них обнаружены определенные каротиноиды или наборы последних.

Рис. 70. Структурные формулы некоторых каротиноидов фотосинтезирующих эубактерий (по Кондратьевой, 1972; Nichols, 1973)

Наиболее разнообразен состав каротиноидных пигментов у пурпурных бактерий, из которых выделено свыше 50 каротиноидов. В клетках большинства пурпурных бактерий содержатся только алифатические каротиноиды, многие из которых принадлежат к группе ксантофиллов. У некоторых пурпурных серобактерий обнаружен арильный моноциклический каротиноид окенон, а у двух видов несерных пурпурных бактерий найдено небольшое количество (3-каротина, алициклического каротиноида, распространенного у цианобактерий и фотосинтезирующих эукариотных организмов. Структурные формулы некоторых характерных для пурпурных бактерий каротиноидов представлены на рис. 70, 2 — 5. Набор и количество отдельных каротиноидов определяют окраску пурпурных бактерий, густые суспензии которых имеют пурпурно-фиолетовый, красный, розовый, коричневый, желтый цвета.

Зеленые бактерии по составу каротиноидов отличаются от пурпурных. Основные каротиноиды зеленых серобактерий — арильные, содержащие 1 или 2 ароматических кольца, а также алициклический каротиноид g-каротин (рис. 70, 6 — 9). Иной состав каротиноидов у зеленых нитчатых бактерий. Эта группа эубактерий, цианобактерий и прохлорофиты содержат алициклические каротиноиды с одним или двумя b-иононовыми кольцами. Основной пигмент — b-каротин, составляющий иногда больше 70% общего количества каротиноидов клетки. Специфическим ксантофиллом этих групп является эхиненон, а также гликозидные производные некоторых кислородсодержащих каротиноидов типа миксоксантофилла (рис. 70, 1, 10, 11).

Каротиноидные пигменты поглощают свет в синем и зеленом участках спектра, т. е. в области длин волн 400 — 550 нм. Эти пигменты, как и хлорофиллы, локализованы в мембранах и связаны с мембранными белками без участия ковалентных связей. Функции каротиноидов фотосинтезирующих эубактерий многообразны. В качестве вспомогательных фотосинтетических пигментов каротиноиды поглощают кванты света в коротковолновой области спектра, которые затем передаются на хлорофилл. У цианобактерий энергия света, поглощенная каротиноидами, поступает в основном в I фотосистему. Эффективность передачи энергии для разных каротиноидов колеблется от 30 до 90%. Известно участие каротиноидов в осуществлении реакций фототаксиса, а также в защите клетки от токсических эффектов синглетного кислорода.

Спектры поглощения клеток разных групп фотосинтезирующих эубактерий

Пигментные наборы фотосинтезирующих эубактерий позволяют им использовать весь диапазон длин волн падающей на Землю солнечной энергии (рис. 71; см. рис. 35). Обращает внимание большое различие в спектрах поглощения у представителей разных групп фотосинтезирующих организмов и прежде всего существенные сдвиги в максимумах поглощения хлорофиллов в красной области спектра. Несомненно экологическое значение этого явления, позволяющего избегать конкуренции за свет между разными группами фотосинтезирующих организмов. Что же касается эволюции спектров поглощения хлорофиллов, то очевидна тенденция к перемещению в более коротковолновую часть спектра с более высоким энергетическим уровнем.

Строение фотосинтетического аппарата эубактерий

Рис. 71. Спектры поглощения клеток эукариотной зеленой водоросли Chlorella pyrenoidosa и представителей разных групп фотосинтезирующих эубактерий: цианобактерии (Anacystis nidulans, Synechococcus), зеленых (Chlorobium limicola, Prosthecochloris aestuarii) и пурпурных (Chromatium okenii, Rhodopseudomonas viridis) бактерий

Фотосинтетический аппарат основных групп эубактерий организован по-разному. Это проявляется как в химической природе составляющих его компонентов (набор пигментов, состав переносчиков электронов), так и в структурной организации в клетке. Фотосинтетический аппарат состоит из трех основных компонентов: 1) светособирающих пигментов, поглощающих энергию света и передающих ее в реакционные центры; 2) фотохимических реакционных центров, где происходит трансформация электромагнитной формы энергии в химическую; 3) фотосинтетических электронтранспортных систем, обеспечивающих перенос электронов, сопряженный с запасанием энергии в молекулах АТФ. В фотохимической реакции участвуют, как правило, хлорофиллы или бактериохлорофиллы a в модифицированной форме. Эти же виды хлорофиллов, наряду с другими, а также пигментами иных типов (фикобилипротеины, каротиноиды) выполняют функцию антенны. У некоторых пурпурных бактерий, содержащих только бактериохлорофилл b, он выполняет обе функции. У недавно описанных гелиобактерий бактериохлорофилл g также служит светособирающим пигментом и входит в состав реакционного центра (табл. 21).

Что такое фотосинтез? Как происходит процесс фотосинтеза

Для всех живых организмов на нашей планете источником жизни является солнечный свет, без которого она не зародилась бы вовсе.

Фотосинтез – это процесс образования глюкозы и кислорода из углекислого газа и воды. В нем обязательно участвуют свет и специальные пигменты, которые называют фотосинтетическими.

Фотосинтетические пигменты

Фотосинтетические пигменты – это вещества, поглощающие энергию света. Существуют три вида этих пигментов: хлорофиллы, каротиноиды и фикобилины.

Самыми важными для фотосинтеза являются хлорофиллы. Они находятся во всех зеленых частях растений: листьях, стебле. Именно они дают зеленую окраску растениям. Свое название они получили от двух греческих слов: «хлорос» – зеленый, «филлион» – лист.

Все зеленые пигменты хлорофиллы хранятся в специальных контейнерах внутри клетки, которые называются хлоропластами. В каждой клеточке листа содержится 20–50 хлоропластов и все они участвуют в процессе фотосинтеза.

Интересно, что хлоропласты имеются не только у растений. Некоторые бактерии и протисты имеют эти органоиды, что позволяет им также производить кислород.

Каротиноиды имеют оранжевую, красную, желтую окраску. Они дают красивый цвет листьям осенью. Яркие цвета моркови, лимона, яблок, арбуза не обходятся без каротиноидов.

Красные водоросли содержат фикобилины красного или синего цвета, которые помогают им поглощать солнечный свет, находясь глубоко на морском дне.

Опыт, который расширил понимание фотосинтеза

Интересный опыт провёл в 1771 году английский химик Джозеф Пристли. В два закрытых стеклянных сосуда он поместил по мыши с той разницей, что к одной из мышек он положил веточку мяты. Благодаря кислороду, выделяемому мятой, мышь жила длительное время, тогда как вторая мышь задыхалась и умирала. В дальнейших опытах Пристли понял, что эксперимент возможен только на свету. В темноте веточка мяты не помогала, и все мышки погибали.

Так он установил, что зелёные части растений способны выделять кислород, необходимый для дыхания.

Как проходит процесс фотосинтеза

Фотосинтез происходит в две фазы: световую и темновую. Обе фазы протекают в хлоропластах листа растения.

Во время световой фазы необходим солнечный свет. В этой стадии обязательно участвует вода и в конце формируются вещества с большим запасом энергии: АТФ (аденозинтрифосфат) и НАДФ (никотинамидадениндинуклеотидфосфат). Они нужны для темновой фазы. Кроме этого выделяется кислород как побочный продукт. Далее он уходит из клеток листа и начинается темновая фаза фотосинтеза.

Главные условия для темновой фазы – это отсутствие света, наличие воды, углекислого газа и АТФ с НАДФ из световой фазы. В конечном итоге образуется глюкоза и большое количество энергии.

Почему фотосинтез невероятно важен для всех живых организмов

Вся жизнь на планете Земля обязана фотосинтезу. Этот процесс – единственный поставщик кислорода для всех живых организмов. Из кислорода образовался и поддерживается до сих пор озоновый слой, который охраняет нас от опасного ультрафиолетового излучения.

Фотосинтез регулирует содержание углекислого газа в атмосфере и держит его на относительно постоянном уровне.

Глюкоза накапливается в растениях в виде крахмала. Он является запасным питательным веществом для растения.

Ссылка на основную публикацию
Формирование здорового образа жизни
Курить не модно! Пробовать курить многие начинают еще в юности, считая это баловством, так они себя чувствуют более взрослыми. «Немного...
Фимоз причины и проявления
Как мужчине растянуть крайнюю плоть? Необходимость растянуть крайнюю плоть у представителей мужского пола возникает при развитии такого патологического процесса, как...
Фитнес в критические дни за и против
Какие упражнения можно делать при месячных. Какие упражнения запрещены во время менструации Популярные материалы Today's: С чем едят оливки. В...
Формула Хлорида натрия структурная химическая
Формула соли поваренной. Химическая формула: поваренная соль. Свойства поваренной соли Поваренная соль — это хлорид натрия, применяемый в качестве добавки...
Adblock detector