Статьи из Большой Советской энциклопедии, БСЭИммуногенетика

Статьи из Большой Советской энциклопедии, БСЭИммуногенетика

Задачи иммуногенетики

Иммуноген е тика, комплексная научная дисциплина, сочетающая методы иммунологии, молекулярной биологии и генетики для изучения наследственных факторов иммунитета, внутривидового разнообразия и наследования тканевых антигенов, генетических и популяционных аспектов взаимоотношений макро- и микроорганизма и тканевой несовместимости. Начало И. положили работы немецких учёных П. Эрлиха и Ю. Моргенрота, обнаруживших в начале 20 в. группы крови у коз, и открытие К. Ландштейнером групп крови у человека. Термин «И.» предложен американским учёным М. Ирвином в 1930.

Индивидуальная и видовая устойчивость растений и животных к бактериальным и вирусным инфекциям обеспечивается сложной многоступенчатой системой защитных сил организма. В борьбе между защитными силами и инфекционными агентами «преимущество» часто остаётся на стороне последних, так как микроорганизмы быстро размножаются, образуя многомиллионные популяции, в которых рано или поздно возникают мутантные формы с более агрессивными свойствами, чем у исходного штамма. Вероятно, как ответное защитное средство на определённом этапе эволюции позвоночных животных возникла система адаптивного иммунитета (антителообразование) — наиболее мощная линия обороны организма, особенно при повторных контактах с инфекционными агентами. Способность (или неспособность) вырабатывать антитела — наследственный признак. Генетическая регуляция биосинтеза антител имеет характерные особенности. Так, образование одной полипептидной цепи молекулы антитела контролируется двумя разными генами. Один из них контролирует образование части цепи, участвующей в построении активного центра; строение этой части различно у антител разной специфичности. Другой ген контролирует образование части цепи, строение которой одинаково у антител, относящихся к данному классу иммуноглобулинов.

Помимо групповых антигенов, существуют наследуемые их варианты, специфичные для отдельных типов клеток, например для лейкоцитов. Различия в строении лейкоцитарных антигенов у донора и реципиента — одна из причин несовместимости при пересадке органов и тканей. Наследственные внутривидовые различия в строении многих белков сыворотки крови (альбумины, трансферрины и др.) контролируются, как правило, аллельными генами, причём частота каждой аллели в популяции высока (20% и выше), что указывает на «давление» естественного отбора. Одна из важнейших задач И. — установление факторов, обусловливающих распространение в популяциях новых аллелей. Таким фактором может служить сходство в строении антигенов у болезнетворных микроорганизмов и макроорганизма. Животные в норме не вырабатывают антител к собственным антигенам, поэтому сходство в антигенном строении между каким-либо компонентом микробной клетки и той или иной молекулой макроорганизма приведёт к тому, что последний не сможет синтезировать антитела, обезвреживающие данный вид микроба. В связи с этим снижаются защитные силы макроорганизма. Поэтому отбор будет подхватывать появление видоизменённых молекул белков (или полисахаридов), повышая тем самым иммунную устойчивость организма. Распространение в популяции новых аллелей может происходить также и в тех случаях, когда в результате мутации соответствующего гена молекула макроорганизма изменяется так, что ферментативные системы микроба уже не могут её использовать в качестве субстрата. Иногда для этого достаточно замены одной аминокислоты в полипептидной цепи, как это имеет место у некоторых мутантных форм гемоглобина. Такие формы распространились в районах земного шара, где высока заболеваемость малярией: носители мутантного гемоглобина не болеют малярией, так как малярийный плазмодий неспособен использовать его в качестве субстрата. В ряде случаев распространяются мутации, которые изменяют биохимию клетки или органа в целом и тем самым нарушают приспособленность паразита. По-видимому, существуют и другие механизмы наследственного иммунитета, благодаря которым достигается наследственная гетерогенность вида-хозяина, препятствующая распространению паразитического штамма микроорганизма.

Таким образом, степень естественной устойчивости к заболеванию животных данного вида определяется многими факторами, суммарно отражая особенности конституции и животного, и возбудителя заболевания. Трёхмерная модель этих взаимоотношений представлена на рис., где показано, что процент особей, выживших после инфекции, зависит как от наследственной устойчивости организма к возбудителю заболевания, так и от вирулентности последнего.

Наследственная устойчивость к заболеваниям, как правило, специфична, так как физиологические основы устойчивости к разным заболеваниям обычно неодинаковы. Так, африканский скот зебу, прекрасно переносящий жару и устойчивый к туберкулёзу очень чувствителен к трипаносомозу; линия белых леггорнов, устойчивая к моноцитозу кур, чувствительна к куриному лейкозу; линии мышей, устойчивые к мышиному тифу, чрезвычайно восприимчивы к вирусу ложного бешенства. С древнейших времён генетическая устойчивость отдельных особей, пород, рас и т. д. к заболеваниям служила предпосылкой для селекции. Так были выведены овцы породы ромни-марш, устойчивые к трихостронгилидам, раса кроликов, устойчивая к миксоматозу, и медоносные пчёлы, устойчивые к американскому гнильцу. Естественный отбор на устойчивость существовал и среди людей. Так, после открытия Нового Света оказалось, что индейцы Северной Америки более чувствительны к кори и ветряной оспе, чем европейцы, для которых эти заболевания были привычны и легко переносимы.

В основе генетической устойчивости к заболеваниям лежат разнообразные механизмы, в том числе и неиммунологические. Белые леггорны, например, устойчивы к белому поносу потому, что имеют более совершенную терморегуляцию; устойчивость скота зебу к клещевым заболеваниям обусловлена более толстой кожей и особенностями кожных выделений, которые отпугивают клещей. Чувствительность к оспе у лиц с группами крови А и AB связана с общностью антигена А человека и антигенов вируса оспы. Поэтому лица с группами крови В и О(Н) легче переносят оспу.

Перенесение генетических представлений в область иммунологии позволило советскому учёному В. П. Эфроимсону сформулировать эволюционно-генетическую концепцию иммуногенеза, объясняющую внутривидовое антигенное разнообразие и гетерогенность антител по специфичности. Каждая здоровая зрелая в иммунологическом отношении особь способна к иммунному ответу на тканевые антигены особи с другим генотипом. Таким образом, тканевая несовместимость — универсальная биологическая закономерность. Лишь однояйцевые близнецы и животные одной чистой линии не разделены барьером тканевой несовместимости, выраженность которой зависит от степени несходства генотипов донора и реципиента. Для успешных пересадок органов и тканей, переливаний крови и клеток костного мозга очень важно снизить до минимума величину этого несходства путём подбора совместимого донора. Изучение клеточных антигенов, их наследования и разнообразия, их обнаружение (типирование) — это те разделы И. , которые особенно важны для трансплантологии, трансфузиологии, иммуногематологии и клинической иммунологии. См. также Иммунология.

Читайте также:  Морковный сок при беременности как правильно и сколько употреблять в зависимости от срока беременнос

Лит.: Медведев Н. Н., Линейные мыши, Л., 1964; Хатт Ф., Генетика животных. пер. с англ., М., 1969; Эфроимсон В. П., Иммуногенетика, М., 1971; Hildemann W. Н., Immunogenetics, San Francisco, 1970.

А. Н. Мац, О. В. Рохлин.

Трёхмерное изображение зависимости жизнеспособности макроорганизма от его устойчивости к патогенным агентам и от вирулентности возбудителя.

ИММУНОГЕНЕТИКА

ИММУНОГЕНЕТИКА (иммунология + генетика) — наука о закономерностях наследования антигенной специфичности и роли генетических механизмов в осуществлении иммунных реакций. Актуальность И. как в теоретическом, так и в сугубо практическом плане связана с необходимостью решения важнейших проблем, посвященных генетике иммунного ответа, генетике несовместимости тканей при пересадках и генетическому гомеостазу внутренней среды организма. И. как наука возникла на рубеже двух наук: генетики (см.) и иммунологии (см.) и использует в решении стоящих перед ней задач методы генетического анализа (см.), молекулярной биологии (см.) и иммунологии.

Исторические корни И. уходят в далекое прошлое, к наблюдениям разной чувствительности генетически различающихся особей одного вида по отношению к возбудителю свойственной этому виду инфекции. Давно были известны резистентные и чувствительные в отношении бактериальных и вирусных инфекций породы рогатого скота, свиней и кур. Детально изучены генетически обусловленные различия мышей и некоторых других грызунов в отношении мышиного тифа. Для людей бесспорно показано, что монозиготные (идентичные) близнецы, которые являются генетическими копиями друг друга, гораздо чаще болеют одной и той же инфекционной болезнью, чем дизиготные (неидентичные) близнецы. Однако И. как наука возникла не на базе наблюдений и осмысливания генетических основ различной чувствительности к инфекциям, а после открытия К. Ландштейнером в 1901 г. групповых факторов крови (А, В,0), получивших впоследствии название изоантигенов (см. Группоспецифические вещества, Группы крови). Изучение закономерностей наследования этих изо антигенов и привело к формированию И. Наследование изо антигенов характеризуется либо полным отсутствием явления доминирования, либо частичным доминированием. В связи с этим антигенный фенотип организма повторяет его генотип.

Изучение изоантигенов привело к появлению трансплантационной И., центральной проблемой к-рой является проблема взаимодействия генетически различающихся соматических клеток и механизма этого взаимодействия. В свою очередь центральным звеном этой проблемы является взаимодействие генетически различающихся клеток трансплантата и реципиента. Успехи в этой области и привели И. к осмысливанию роли иммунных механизмов в поддержании генетического гомеостаза многомиллионных популяций соматических клеток организма (Ф. Вернет, 1964).

В 60—70-х годах 20 в. было установлено, что не только чувствительность организмов к инфекциям, но и процессы иммуногенеза и антителогенеза при вакцинациях, а также интенсивность активно возникающего иммунитета имеют генетические основы. При этом различия в эффективности однозначной вакцинации у разных особей в большей мере определяются наследственностью (см.), чем внешними условиями. Иммунизация мышей семи различных генотипов леитоспирами выявила два типа реагирования. Мыши инбредной линии C57BL вырабатывают в 15—20 раз больше антител к лептоспирам, чем мыши линии СЗН. Этот признак наследуется как доминантный, он не сцеплен с полом и детерминирован более чем одной парой генов. Доминантный тип наследования интенсивности реакции обнаружен по отношению ко многим антигенам. При этом животные могут быть высоко (сильно) отвечающими в отношении одних антигенов и низко (слабо) отвечающими в отношении других. Иммунологическая реактивность индивидуума всегда конкретна: по отношению к одному антигену — одна, по отношению к другому — другая. Анализ генетической детерминированности дал возможность идентифицировать локусы, контролирующие иммунный ответ (гены IR). Показано их тесное сцепление с локусом гистосовместимости; у мышей гены IR располагаются в 17-й хромосоме внутри главной системы гистосовместимости Н2.

Другой тип наследования состоит в том, что гибриды первого поколения, получаемые при скрещивании особи с высоким иммунным ответом (по продукции антител) с особью, относящейся к нереагирующей линии, не дают иммунного ответа, т. е. ведут себя по типу нереагирующей линии. Наиболее демонстративно этот тип наследования проявляется при трансплантационной иммунологии. Белковые или клеточные изо-антигены, не вызывающие иммунного ответа у особей определенной линии, не вызывают его и у гибридов этой линии.

Два типа наследования интенсивности (силы) реакции на иммунизирующий агент свидетельствуют о наличии по крайней мере двух основных причин генетической обусловленности слабого иммунного ответа. Одна из них связана с тем, что иммунизирующий антигенный детерминант тождествен определенным тканевым детерминантам у животных данного генотипа. В этом случае антиген не воспринимается как чужой и не включает иммуногенез (т. е. не вызывает образования антител). Поскольку гибриды первого поколения получают полный набор антигенов каждого из родителей и данный антиген присутствует в их тканях, результатом является наследование неспособности реагировать на данный антигенный детерминант.

Читайте также:  Слезятся глаза у взрослого - причины и лечение в домашних условиях

Доминантный характер наследования сильного ответа связан с наличием большого числа T или В иммунокомпетентных по отношению к данным антигенам клеток в лимфоидной ткани высокореагирующих организмов. Не исключена возможность того, что в отношении некоторых антигенов низкий иммунный ответ связан с наследственно обусловленной недостаточностью определенных ферментов или ферментных систем макрофагов, обрабатывающих микробные антигены перед их утилизацией иммунокомпетентными клетками.

Эти факты ставят перед современной И. в свою очередь следующие проблемы: 1) дифференцированная оценка иммунологической реактивности человека как в смысле конкретных наследственных дефектов Т- и В-систем клеток, так и в смысле конкретных антигенов; 2) определение генетической обусловленности силы иммунного ответа на тот или иной конкретный антиген до иммунизации; 3) перевод генетически низко реагирующих особей в высоко реагирующие; 4) принцип индивидуализации вакцин, в соответствии с к-рым одни группы людей иммунизируются по одним схемам, другие — по другим.

Трансплантационная И. изучает причины несовместимости тканей, механизмы отторжения генетически чужеродных трансплантатов и пути преодоления несовместимости. Основные ее достижения связаны с вскрытием генетических законов трансплантации. Согласно этим законам, ткань донора (кожа и т. п.), генетически отличная от ткани реципиента, стимулирует иммунологические реакции. Это генетическое отличие заключается в том, что в геноме донора содержатся гены, отсутствующие у реципиента, а не наоборот, т. е. для включения механизма иммунитета инициирующие ткани должны нести признаки генетической чужеродности. Так, кожный лоскут от особи, принадлежащей к какой-либо генетически чистой линии животных (обозначим генотип АА), стимулирует иммунологические реакции и отторгается при пересадке реципиенту, принадлежащему другой линии (генотип В В), но приживается на животных генотипа АА. Трансплантат, взятый от кого-либо из родителей, успешно приживается на гибридах АВ, т. к. они не несут в себе элементов генетической чужеродности: гибриды содержат полный набор генов обеих родительских линий. Наоборот, кожа, взятая от гибридов АВ, отторгается при пересадке индивиду, относящемуся к любой из родительских линий, т. к. эта кожа является трансплантатом, несущим признаки чужеродности (В для АА и А для ВВ).

Позднее было показано, что отличие даже по одному гену неизбежно обеспечивает антигенную чужеродность. Главная генетическая система гистосовместимости человека получила название HLA. Установлено, что на 6-й хромосоме человека локализуются гены, контролирующие ряд иммунол, признаков и получившие название главного комплекса гистосовместимости (МНС). В его состав входят гены А, В, С, D, детерминирующие лейкоцитарные антигены HLA, и гены, контролирующие фактор Bf пропердина, ряд компонентов комплемента, гены иммунного ответа и др.

П., объяснившая хирургические неудачи при пересадках тканей, выдвинула и проблему преодоления барьера несовместимости. И если основной задачей иммунологии первой половины 20 в. было стимулирование иммунитета, то позже возникла новая задача — научиться подавлять иммунитет. Открытие в 1953 г. П. Медаваром и М. Гашеком феномена иммунологической толерантности, т. е. терпимости к чужеродным тканям, определило одно из новых направлений исследований — поиск биол, путей преодоления несовместимости. Одновременно осуществлялся поиск хим. средств подавления иммунитета, в результате чего было найдено (или синтезировано) много хим. иммунодепрессантов — аналогов пуринов и пиримидинов, алкилирующих агентов, антибиотиков (актиномицин D, митомицин, пуромицин), стероидных гормонов и др. Однако необходимо отметить, что пока все известные иммунодепрессивные вещества (см.) относятся к цитостатикам, неспецифически блокирующим пролиферацию клеток или синтез белка. Вызываемое ими угнетение иммунологической реактивности неспецифично. Иммуногенез угнетается в отношении всех антигенов, и организм оказывается безоружным перед лицом любой инфекции. Поэтому одной из главнейших задач в этой области является изыскание веществ и способов, обеспечивающих специфическое подавление реакции только на заданные антигены.

К 1977 г. описано 57 лейкоцитарных антигенов человека; 47 антигенов выявляются серол, методами и находятся под контролем локусов А, В, С; 10 антигенов детерминированы геном D и идентифицированы пока только методами с использованием культур тканей. Предполагают, что ген D тесно сцеплен с генами иммунного ответа. Характеристика человеческой популяции по лейкоцитарным антигенам преследует по крайней мере две цели: отбор максимально совместимых доноров и реципиентов и выделение трансплантационных антигенов в чистом виде. От успешного решения этих задач зависит широта клин, применения пересадки органов и тканей.

Один индивидуум от другого может максимально отличаться по восьми антигенам главной системы HLA. Подбор тождественных донора и реципиента по 4 антигенам обеспечивает приживление в течение года 70—75% пересаженных почек. При отличии по одному антигену — 60—65%, по двум— 50—55%.

Очень близко к проблемам тканевой совместимости стоит проблема роли иммунологических механизмов в процессах поддержания генетического постоянства многомиллионных популяций соматических клеток целостного организма. Только кроветворная и лимфоидная ткани человека состоят не менее чем из 1012 клеток. Тот факт, что минимального генетического отличия достаточно для иммунного распознавания «чужого», дает возможность строить теории контроля генетического постоянства внутренней среды организма. Уже изучаются конкретные механизмы сингенного предпочтения и ингибирования несингенных размножающихся клеток. Термин «сингенное предпочтение» введен шведским иммуногенетиком Хельстремом (К. Hellstrom) в 1964 г. Существо явления состоит в том, что клетки и ткани медленнее растут и размножаются при их попадании в генетически отличный организм даже в условиях, когда этот организм не способен включить иммунологические механизмы отторжения. Феномен инактивации несингенных стволовых клеток обнаружен Р. В. Петровым и Л. С. Сеславиной в 1967 г. Изучение феномена показало, что живые неиммунные лимфоциты при первичном контакте с генетически отличающимися (несингенными) клетками кроветворных тканей обладают способностью инактивировать содержащиеся там стволовые клетки, т. е. элементы, от которых зависит рост и размножение этих тканей. Следовательно, для любой генетически отличающейся клетки в организме сразу же складывается весьма неблагоприятная ситуация. Ее собственный темп размножения уменьшается вследствие несингенного окружения, а лимфоциты еще дополнительно активно ингибируют ее функции.

Читайте также:  Волдыри на языке у ребенка и взрослого - причины и лечение

Описанные феномены свидетельствуют о существовании минимум двух механизмов, играющих существенную роль в поддержании генетического гомеостаза соматических клеток в течение жизни индивидуума; один из них — предпочтительное размножение генотипически идентичных клеток, второй — активное торможение способных к размножению генетически отличающихся клеток. Благодаря этим механизмам появившаяся в организме мутантная (генетически изменившаяся) клетка имеет очень мало шансов дать потомство или размножиться в сколько-нибудь значительном количестве. Можно предположить, что накопление в организме аномальных клеточных клонов, в том числе и раковых, происходит при сочетании по меньшей мере двух условий: выход клеток из под контроля, обеспечиваемого эффектом сингенного предпочтения, и нарушение способности лимфоцитов активно ингибировать размножение генетически отличающихся клеток.

Проблемы И. имеют непосредственное отношение к ряду важнейших медико-биологических проблем. Классическая иммунология разработала систему профилактических прививок, к-рая позволила устранить опасность массовых инфекционных заболеваний. Однако обеспечение защиты организма от действия факторов, несущих чужеродную генетическую информацию (бактерий, вирусов, простейших, чужеродных белков и тканей), таким путем невозможно. Решение этой проблемы возможно через решение проблемы индивидуальных особенностей иммунного ответа.

Библиография: Бернет Ф. М. Клеточная иммунология, пер. с англ., М., 1971, библиогр.; Петров Р. В. Иммунология и иммуногенетика, М., 1976, библиогр.; Эфроимсон В. П. Иммуногенетика, М., 1971.

Лаборатория иммуногенетики

Задачи лаборатории:

  • изучение риска развития онкологических заболеваний в условиях воздействия химических факторов среды обитания у детей и взрослых;
  • дифференциация пациентов по величине риска развития мутаций на уровне ДНК у детей и взрослых;
  • анализ риска развития аллергопатологии органов дыхания (бронхиальная астма) и кожи (атопический дерматит) (дети, взрослые), болезни обмена веществ и сердечно-сосудистой системы в условиях воздействия химических факторов;
  • диагностика врожденных и вторичных иммунодефицитных состояний (дети, взрослые);
  • диагностика трансгенных продуктов и микроорганизмов;
  • диагностика воздействия химических факторов на совместимость тканей для задач трансплантации (на перспективу);
  • изучение генных нарушений с использованием возможностей ДНК-технологий, метода секвенирования; типирования генов ГКГС; типирования генов цитокинов (например, интерлейкинов, способствующих вынашиванию беременности); ДНК-диагностики с использованием полимеразной цепной реакции.

Вы здесь

  • О центре
    • Структура
    • О научном центре
    • Научный руководитель
    • Дирекция
    • Руководители отделов
    • История
      • Книга истории
    • Новости
    • Лицензии и аттестаты
    • Вакансии
    • Информационные буклеты
    • СМИ о нас
    • Документы
    • Противодействие коррупции
    • Вопрос-Ответ
    • Международное сотрудничество
  • Научная деятельность
    • Отделы и лаборатории
      • Отдел анализа риска для здоровья
      • Отдел системных методов СГА и СГМ
      • Отдел математического моделирования систем и процессов
      • Отдел химико-аналитических методов исследования
      • Отдел иммунобиологических методов диагностики
      • Отдел биохимических и цитогенетических методов диагностики
      • Отдел гигиены детей и подростков
    • Ведущие ученые
    • Ученый совет
    • Комитет по Этике
    • Совет молодых учёных и специалистов
      • Новости и анонсы
      • Контакты
      • Школа молодых ученых
    • Научная школа
    • Журнал «Анализ риска здоровью»
    • Специализированные центры
      • Орган инспекции
      • Испытательный лабораторный центр
      • ГИС-Центр
        • Пример 1
        • Пример 2
        • Пример 3
        • Пример 4
        • Пример 5
      • Профцентр
    • Риск-ориентированный надзор
    • Разработки и публикации
      • Публикации
      • Монографии
      • Патенты
        • Свидетельство БД
      • НИР
      • Методические документы
    • Конференции и форумы
    • Проблемная комиссия
    • Национальные проекты
      • НМЦ по вопросам здорового питания
  • Медицинская деятельность
    • Руководство клиники
    • Список специалистов
    • Медицинские услуги
      • Лечебно-диагностическая помощь
      • Информация для пациентов
      • Платные услуги
    • Подразделения клиники
      • Консультативно-поликлиническое отделение
      • Терапевтическое отделение
      • Педиатрическое отделение
      • Отделение лучевой диагностики
      • Отделение физиотерапии
    • Документы
    • Индивидуальное информирование о рисках
  • Образование
    • Аспирантура
      • Локальные нормативные акты
      • Нормативно-правовая база
      • Абитуриенту
      • Обучающимся
      • Доступная среда
      • Прикрепление Лиц для подготовки Диссертаций
    • Дополнительное профессиональное образование
    • Электронная информационно-образовательная среда
  • Диссертационный совет
    • Диссертации
  • Контакты
    • Расположение
    • Карта сайта
    • Филиал в г. Саратов
  • Отделы и лаборатории
    • Отдел анализа риска для здоровья
    • Отдел системных методов СГА и СГМ
    • Отдел математического моделирования систем и процессов
    • Отдел химико-аналитических методов исследования
    • Отдел иммунобиологических методов диагностики
    • Отдел биохимических и цитогенетических методов диагностики
    • Отдел гигиены детей и подростков
  • Ведущие ученые
  • Ученый совет
  • Комитет по Этике
  • Совет молодых учёных и специалистов
  • Научная школа
  • Журнал «Анализ риска здоровью»
  • Специализированные центры
  • Риск-ориентированный надзор
  • Разработки и публикации
  • Конференции и форумы
  • Проблемная комиссия
  • Национальные проекты
  • О центре
  • Научная деятельность
  • Медицинская деятельность
  • Образование
  • Диссертационный совет
  • Контакты
  • Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека
  • Министерство здравоохранения и социального развития Российской Федерации
  • Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Пермскому краю
  • ФГУ ЦНИИОИЗ Минздравсоцразвития РФ

Адрес: 614045, г.Пермь, ул.Монастырская, 82
Телефон, факс: 8(342)237-25-34

Адрес: 614068, г.Пермь, ул.Екатерининская, 224
Регистратура: 8(342)236-87-60

Полная контактная информация
Реквизиты и устав организации в разделе документы.

Ссылка на основную публикацию
Стальник полевой фото, лечебные свойства, применение настойки корней для лечения заболеваний
Стальник полевой — полезные свойства и противопоказания, применение Сегодня мы поговорим о таком лекарственном растении, как стальник полевой, расскажем, где...
Средства невербального общения особенности и виды, жесты, позы и их значение
Голос как средство общения Общение является достаточно важной потребностью человека. С помощью общения мы обмениваемся информацией, познаём друг друга и...
Средства от поноса какие лекарства помогут остановить понос
Таблетки от поноса – обзор лучших препаратов при диарее Таблетки от поноса должны быть в каждой аптечке, ведь расстройство стула...
Стандарт «Техника проведения поверхностной пальпации живота»; Студопедия
Поверхностная пальпация живота алгоритм Ориентировочная поверхностная пальпация производится таким образом, что врач, осторожно, не стремясь особенно проникать вглубь, начинает пальпаторно...
Adblock detector